Arithmetic Instructions

Introduction

- Arithmetic instruction is used for arithmetic operation such as addition subtraction multiplication and division operation. It is widely used instruction of any microprocessor and with out this instruction every microprocessor is useless.

Scope of research

- Design an instruction in such format that can have fast processing speed and easily understand by processor and user.

Arithmetic Instructions

- The arithmetic instructions include
- Addition
- Subtraction
- Multiplication
- Division
- Data formats
- Unsigned binary bytes
- Signed binary bytes
- Unsigned binary words
- Signed binary words
- Unpacked decimal bytes
- Packed decimal bytes
- ASCII numbers

Arithmetic Instructions (cont.)

Addition		
ADD	Add byte or word	
ADC	Add byte or word with carry	
INC	Increment byte or word by 1	
AAA	ASCll adjust for addition	
DAA	Decimal adjust for addition	
Subtraction		
SUB	Subtract byte or word	
SBB	Subtract byte or word with	
	borrow	
DEC	Decrement byte or word by 1	
NEG	Negate byte or word	
AAS	ASCll adjust for subtraction	
DAS	Decimal adjust for subtraction	
	Multiplication	
MUL	Multiply byte or word unsigned	
IMUL	Integer multiply byte or word	
AAM	ASCII adjust for multiply	
	Division	
DIV	Divide byte or word unsigned	
IDIV	Integer divide byte or word	
AAD	ASCll adjust for division	
CBW	Convert byte to word	
CWD	Convert word to doubleword	

Arithmetic Instructions (cont.)

- Addition Instructions: ADD, ADC, INC, AAA, DAA

Mnemonic	Meaning	Format	Operation	Flags Affected
ADD	Addition	ADD D, S	$\begin{aligned} & (\mathrm{S})+(\mathrm{D}) \rightarrow(\mathrm{D}) \\ & \text { Carry } \rightarrow(\mathrm{CF}) \end{aligned}$	OF, SF, ZF, AF, PF, CF
ADC	Add with carry	ADC D, S	$\begin{aligned} & (\mathrm{S})+(\mathrm{D})+(\mathrm{CF}) \rightarrow(\mathrm{D}) \\ & \text { Carry } \rightarrow(\mathrm{CF}) \end{aligned}$	OF, SF, ZF, AF, PF, CF
INC	Increment by 1	INC D	(D) $+1 \rightarrow$ (D)	OF, SF, ZF, AF, PF
AAA	ASCII adjust for addition	AAA		AF, CF $\mathrm{OF}, \mathrm{SF}, \mathrm{ZF}, \mathrm{PF}$ undefined
DAA	Decimal adjust for addition	DAA		SF, ZF, AF, PF, CF, OF, undefined

Arithmetic Instructions (cont.)

- Addition Instructions: ADD, ADC, INC, AAA, DAA

Destination	Source
Register	Register
Register	Memory
Memory	Register
Register	Immediate
Memory	Immediate
Accumulator	Immediate

Destination
Reg16
Reg8
Memory

Allowed operands for INC instruction

Allowed operands for ADD and Ansinstructions

Arithmetic Instructions (cont.)

- EXAMPLE:
- Assume that the AX and BX registers contain 1100_{16} and $0 A B C_{16}$, respectively. What is the result of executing the instruction ADD AX, BX?
- Solution:

$$
(B X)+(A X)=0 A B C_{16}+1100_{16}=1 \mathrm{BBC}_{16}
$$

The sum ends up in destination register AX. That is

$$
(A X)=1 B B C_{16}
$$

Arithmetic Instructions (cont.)

- Addition Instructions: ADD, ADC, INC, AAA, DAA
- ADD AX, BX

Arithmetic Instructions (cont.)

- Addition Instructions: ADD, ADC, INC, AAA, DAA
- ADD AX, BX

Arithmetic Instructions (cont.)

- EXAMPLE:
- The original contents of $A X, B L$, word-size memory location SUM, and carry flag (CF) are $1234_{16}, \mathrm{AB}_{16}, 00 \mathrm{CD}_{16}$, and 0_{16}, respectively. Describe the results of executing the following sequence of instruction?

ADD AX, [SUM]
ADC BL, 05H
INC WORD PTR [SUM]

- Solution:
$(A X) \longleftarrow(A X)+(S U M)=1234_{16}+00 C_{16}=1301_{16}$
$(\mathrm{BL}) \longleftarrow(\mathrm{BL})+\mathrm{imm} 8+(\mathrm{CF})=\mathrm{AB}_{16}+5_{16}+0_{16}=\mathrm{BO}_{16}$
$(S U M) \longleftarrow(S U M)+1_{16}=00 C D_{16}+1_{16}=00 \mathrm{CE}_{16}$

Arithmetic Instructions (cont.)

- EXAMPLE:

What is the result of executing the following instruction sequence?

> ADD AL, BL
> AAA

Assuming that AL contains 32_{16} (ASCII code for 2) and BL contains 34_{16} (ASCII code 4), and that AH has been cleared

- Solution:
(AL) $\quad(\mathrm{AL})+(\mathrm{BL})=32_{16}+34_{16}=66_{16}$
The result after the AAA instruction is

$$
\begin{aligned}
& (A L)=06_{16} \\
& (A H)=00_{16} \longleftarrow
\end{aligned}
$$

with both AF and CF remain cleared

Arithmetic Instructions (cont.)

- EXAMPLE:
- Perform a 32-bit binary add operation on the contents of the processor's register.
- Solution:
$(D X, C X) \longleftarrow(D X, C X)+(B X, A X)$
$(D X, C X)=$ FEDCBA $^{(D 8}{ }_{16}$
$(B X, A X)=01234567_{16}$
MOV DX, OFEDCH
MOV CX, 0BA98H
MOV BX, 01234H
MOV AX, 04567H
ADD CX, AX
ADC DX, BX ;
Add with carry

Arithmetic Instructions (cont.)

- Subtraction Instructions: SUB, SBB, DEC, AAS, DAS, and NEG

Mnemonic	Meaning	Format	Operation	Flags affected
SUB	Subtract	SUB D, ${ }^{\text {S }}$	$\begin{aligned} & (\mathrm{D})-(\mathrm{S}) \rightarrow(\mathrm{D}) \\ & \text { Borrow } \rightarrow(\mathrm{CF}) \end{aligned}$	OF, SF, ZF, AF, PF, CF
SBB	Subtract with borrow	SBB D,S	(D) - (S) - (CF) \rightarrow (D)	OF, SF, ZF, AF, PF, CF
DEC	Decrement by 1	DEC D	(D) - $1 \rightarrow$ (D)	OF, SF, ZF, AF, PF
NEG	Negate	NEG D	$\begin{aligned} & 0-(\mathrm{D}) \rightarrow(\mathrm{D}) \\ & 1 \rightarrow(\mathrm{CF}) \end{aligned}$	OF, SF, ZF, AF, PF, CF
DAS	Decimal adjust for subtraction	DAS		SF, ZF, AF, PF, CF OF undefined
AAS	ASCII adjust for subtraction	AAS		AF, CF OF, SF, ZF, PF undefined

Arithmetic Instructions (cont.)

- Subtraction Instructions: SUB, SBB, DEC, AAS, DAS, and NEG

Destination	Source
Register	Register
Register	Memory
Memory	Register
Accumulator	Immediate
Register	Immediate
Memory	Immediate

Destination
Reg16
Reg8
Memory

Destination
Register
Memory

Allowed operands for SUB and SBB instructions

Allowed operands for DEC instruction

Allowed operands for NEG instruction

Arithmetic Instructions (cont.)

- EXAMPLE:
- Assuming that the contents of register BX and CX are 1234_{16} and 0123_{16}, respectively, and the carry flag is 0 , what is the result of executing the instruction SBB BX, CX?
- Solution:

$$
\text { (BX)-(CX)-(CF) } \quad(B X)
$$

We get

$$
\begin{aligned}
\begin{aligned}
(\mathrm{BX}) & = \\
& =1234_{16}-0123_{16}-0_{16} \\
& =1111_{16}
\end{aligned} \\
\text { the carry flag remains cleared }
\end{aligned}
$$

Arithmetic Instructions (cont.)

- EXAMPLE:
- Assuming that the register BX contains $003 \mathrm{~A}_{16}$, what is the result of executing the following instruction?

NEG BX

- Solution:

$$
\begin{aligned}
& (\mathrm{BX})=0000_{16}-(\mathrm{BX})=0000_{16}+2^{\prime} \text { 'complement of } 003 \mathrm{~A}_{16} \\
& \quad=0000_{16}+\mathrm{FFC}_{16} \\
& =\text { FFC6 }_{16}
\end{aligned}
$$

Since no carry is generated in this add operation, the carry flag is complemented to give (CF) $=1$

Arithmetic Instructions (cont.)

- EXAMPLE:
- Perform a 32-bit binary subtraction for variable X and Y
- Solution:

MOV	SI, 200 H	;Initialize pointer for X
MOV	DI, 100 H	;Initialize pointer for \mathbf{Y}
MOV	AX,[SI]	;Subtract LS words
SUB	AX,[DI]	
MOV	[SI],AX	;Save the LS word of result
MOV	AX,[SI]+2	;Subtract MS words
SBB	AX,[DI]+2	
MOV	[SI]+2,AX	;Save the MS word of result

Arithmetic Instructions (cont.)

- Multiplication Instructions: MUL, DIV, IMUL, IDIV, AAM, AAD. CBW. and CWD

Mnemonic	Meaning	Format	Operation	Flags Affected
MUL	Multiply (unsigned)	MUL S	$\begin{aligned} & (A L) \cdot(S 8) \rightarrow(A X) \\ & (A X) \cdot(S 16) \rightarrow(D X),(A X) \end{aligned}$	OF CF $S F, Z F, A F, P F$ undefined
DIV	Division (unsigned)	DIV S	(1) $\mathrm{Q}((\mathrm{AX}) /(\mathrm{SB})) \rightarrow(\mathrm{AL})$ $R((A X) /(S 8)) \rightarrow(A H)$ (2) $\mathrm{Q}((\mathrm{DX}, \mathrm{AX}) /(\mathrm{S} 16)) \rightarrow(\mathrm{AX})$ $R((D X, A X) /(S 16)) \rightarrow(D X)$ If Q is F_{16} in case (1) or FFFF $_{16}$ in case (2), then type 0 interrupt occurs	OF, SF, ZF, AF, PF, CF undefined
IMUL	Integer multiply (signed)	IMUL S	$\begin{aligned} & (A L) \cdot(S 8) \rightarrow(A X) \\ & (A X) \cdot(S 16) \rightarrow(D X),(A X) \end{aligned}$	OF, CF SF, ZF, AF, PF undefined
IDIV	Integer divide (signed)	IDIV S	(1) $Q((A X) /(S 8)) \rightarrow(A L)$ $\mathrm{R}((\mathrm{AX}) /(\mathrm{SB})) \rightarrow(\mathrm{AH})$ (2) $Q((D X, A X) /(S 16)) \rightarrow(A X)$ $R((D X, A X) /(S 16)) \rightarrow(D X)$ If Q is positive and exceeds 7FFF ${ }_{16}$ or if Q is negative and becomes less than 8001_{16}, then type 0 interupt occurs	OF, SF, ZF, AF, PF, CF undefined

Arithmetic Instructions (cont.)

- Multiplication Instructions: MUL, DIV, IMUL, IDIV, AAM, AAD, CBW, and CWD

AAM	Adjust AL for	AAM	$Q((\mathrm{AL}) / 10) \rightarrow(\mathrm{AH})$	SF, ZF, PF
	multiplication		$R((A L) / 10) \rightarrow(A L)$	OF, AF,CF undefined
AAD	Adjust AX for division	AAD	$\begin{aligned} & (\mathrm{AH}) \cdot 10+(\mathrm{AL}) \rightarrow(\mathrm{AL}) \\ & 00 \rightarrow(\mathrm{AH}) \end{aligned}$	SF, ZF, PF OF, AF, CF undefined
CBW	Convert byte to word	CBW	$($ MSB of AL$) \rightarrow$ (All bits of AH)	None
CWD	Convert word to double word	CWD	$($ MSB of $A X) \rightarrow($ All bits of DX)	None

Source
Reg8
Reg16
Mem8
Mem16

Arithmetic Instructions (cont.)

- EXAMPLE:
- The 2's-complement signed data contents of AL are -1 and that of $C L$ are -2 . What result is produced in $A X$ by executing the following instruction?

MUL CL and IMUL CL

- Solution:
$(A L)=-1($ as 2 's complement $)=11111111_{2}=\mathrm{FF}_{16}$
$(C L)=-2($ as 2 's complement $)=11111110_{2}=\mathrm{FE}_{16}$
Executing the MUL instruction gives
(AX) =
Executing the IMUL instruction gives

Arithmetic Instructions (cont.)

- EXAMPLE:
- What is the result of executing the following instructions?

MOV AL, OA1H

CBW
CWD

- Solution:

$$
(\mathrm{AL})=A 1_{16}=10100001_{2}
$$

Executing the CBW instruction extends the MSB of AL

$$
(\mathrm{AH})=11111111_{2}=\mathrm{FF}_{16}
$$

or $(A X)=1111111110100001_{2}$
Executing the CWD instruction, we get
$(D X)=1111111111111111_{2}=$ FFFF $_{16}$
That is, $(\mathrm{AX})=\mathrm{FFAl}_{16}(\mathrm{DX})=\mathrm{FFFF}_{16}$

